2→3 and 3→2 Flips#

A convex 5-vertex polyhedron has two valid tetrahedralizations. The first (Configuration 1) has two tetrahedra sharing a common face, and the second (Configuration 2) has three tetrahedra that all share a common edge.

graph tet3 {
node [shape=point, fontname="source code pro"];
edge [style=solid];

d [pos="0.9,0.4!"];
a [pos=".4,0.9!"];
e [pos="0.5,-0.7!"];
b [pos="0,0!"];
c [pos=".6,-.2!"];

b -- a [penwidth=1, color="#d08770"];
c -- a [penwidth=1, color="#d08770"];
d -- a [penwidth=1, color="#d08770"];

b -- c [penwidth=1, color="#5e81ac:#d08770"];
c -- d [penwidth=1, color="#5e81ac:#d08770"];
d -- b [penwidth=1, color="#d08770:#5e81ac", style=dotted];

b -- e [penwidth=1, color="#5e81ac"];
c -- e [penwidth=1, color="#5e81ac"];
d -- e [penwidth=1, color="#5e81ac"];

label0 [label="a", pos="0.3,1.0!", shape=none, fontname="source code pro"]
label1 [label="b", pos="-.1,0!",  shape=none, fontname="source code pro"]
label2 [label="c", pos=".65,-0.05!", shape=none, fontname="source code pro"]
label3 [label="d", pos="1.0,0.4!",  shape=none, fontname="source code pro"]
label4 [label="e", pos=".5,-0.8!",  shape=none, fontname="source code pro"]

}

Configuration 1 (2 tets)

graph tet3 {

node [shape=point, fontname="source code pro"];
edge [style=solid];

d [pos="0.9,0.4!"];
a [pos=".4,0.9!"];
e [pos="0.5,-0.7!"];
b [pos="0,0!"];
c [pos=".6,-.2!"];


b -- a [penwidth=1, color="#d08770:#5e81ac"];
c -- a [penwidth=1, color="#a3be8c:#5e81ac"];
d -- a [penwidth=1, color="#a3be8c:#d08770"];

b -- c [penwidth=1, color="#5e81ac"];
c -- d [penwidth=1, color="#a3be8c"];
d -- b [penwidth=1, color="#d08770", style=dotted];

b -- e [penwidth=1, color="#5e81ac:#d08770"];
c -- e [penwidth=1, color="#5e81ac:#a3be8c"];
d -- e [penwidth=1, color="#d08770:#a3be8c"];

a -- e [penwidth=1.5, color="#5e81ac:#d08770:#a3be8c", style=dashed]

label0 [label="a", pos="0.3,1.0!", shape=none, fontname="source code pro"]
label1 [label="b", pos="-.1,0!",  shape=none, fontname="source code pro"]
label2 [label="c", pos=".65,-0.05!", shape=none, fontname="source code pro"]
label3 [label="d", pos="1.0,0.4!",  shape=none, fontname="source code pro"]
label4 [label="e", pos=".5,-0.8!",  shape=none, fontname="source code pro"]

}

Configuration 2 (3 tets)

Flipping Procedure#

Every face-connected pair of elements is a candidate for a 2→3 flip, but the flip will only be valid of those two elements form a convex polyhedron. This can be checked by verifying that, for each of the 6 outer faces of the polyhedron, all the two non-face nodes lie on the same side of the face. Similarly, edges connected to three elements are candidates for a 3→2 flip if those three elements form a convex, 5-node polyhedron.